3 resultados para Isoenzymes

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Creatine (Cr) plays a key role in cellular energy metabolism and is found at high concentrations in metabolically active cells such as skeletal muscle and neurons. These, and a variety of other cells, take up Cr from the extra cellular fluid by a high affinity Na+/Cl--dependent creatine transporter (CrT). Mutations in the crt gene, found in several patients, lead to severe retardation of speech and mental development, accompanied by the absence of Cr in the brain.
In order to characterize CrT protein(s) on a biochemical level, antibodies were raised against synthetic peptides derived from the N- and C-terminal cDNA sequences of the putative CrT-1 protein. In total homogenates of various tissues, both antibodies, directed against these different epitopes, recognize the same two major polypetides on Western blots with apparent Mr of 70 and 55 kDa. The C-terminal CrT antibody (α-CrTCOOH) immunologically reacts with proteins located at the inner membrane of mitochondria as determined by immuno-electron microscopy, as well as by subfractionation of mitochondria. Cr-uptake experiments with isolated mitochondria showed these organelles were able to transport Cr via a sulfhydryl-reagent-sensitive transporter that could be blocked by anti-CrT antibodies when the outer mitochondrial membrane was permeabilized. We concluded that mitochondria are able to specifically take-up Cr from the cytosol, via a low-affinity CrT, and that the above polypeptides would likely represent mitochondrial CrT(s). However, by mass spectrometry techniques, the immunologically reactive proteins, detected by our anti-CrT antibodies, were identified as E2 components of the agr-keto acid dehydrogenase multi enzyme complexes, namely pyruvate dehydrogenase (PDH), branched chain keto acid dehydrogenase (BC-KADH) and α-ketoglutarate dehydrogenase (α-KGDH). The E2 components of PDH are membrane associated, whilst it would be expected that a mitochondrial CrT would be a transmembrane protein. Results of phase partitioning by Triton X-114, as well as washing of mitochondrial membranes at basic pH, support that these immunologically cross-reactive proteins are, as expected for E2 components, membrane associated rather than transmembrane. On the other hand, the fact that mitochondrial Cr uptake into intact mitoplast could be blocked by our α-CrTCOOH antibodies, indicate that our antisera contain antibodies reactive to proteins involved in mitochondrial transport of Cr. The presence of specific antibodies against CrT is also supported by results from plasma membrane vesicles isolated from human and rat skeletal muscle, where both 55 and 70 kDa polypeptides disappeared and a single polypeptide with an apparent electrophoretic mobility of ~ 60 kDa was enriched This latter is most likely representing the genuine plasma membrane CrT.
Due to the fact that all anti-CrT antibodies that were independently prepared by several laboratories seem to cross-react with non-CrT polypeptides, specifically with E2 components of mitochondrial dehydrogenases, further research is required to characterise on a biochemical/biophysical level the CrT polypeptides, e.g. to determine whether the ~ 60 kDa polypeptide is indeed a bona-fide CrT and to identify the mitochondrial transporter that is able to facilitate Cr-uptake into these organelles. Therefore, the anti-CrT antibodies available so far should only be used with these precautions in mind. This holds especially true for quantitation of CrT polypeptides by Western blots, e.g. when trying to answer whether CrT's are up- or down-regulated by certain experimental interventions or under pathological conditions.
In conclusion, we still hold to the scheme that besides the high-affinity and high-efficiency plasmalemma CrT there exists an additional low affinity high Km Cr uptake mechanism in mitochondria. However, the exact biochemical nature of this mitochondrial creatine transport, still remains elusive. Finally, similar to the creatine kinase (CK) isoenzymes, which are specifically located at different cellular compartments, also the substrates of CK are compartmentalized in cytosolic and mitochondrial pools. This is in line with 14C-Cr-isotope tracer studies and a number of [31P]-NMR magnetization transfer studies, as well as with recent [1H]-NMR spectroscopy data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consistent with its highest abundance in humans, cytochrome P450 (CYP) 3A is responsible for the metabolism of about 60% of currently known drugs. However, this unusual low substrate specificity also makes CYP3A4 susceptible to reversible or irreversible inhibition by a variety of drugs. Mechanism-based inhibition of CYP3A4 is characterised by nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)-, time- and concentration-dependent enzyme inactivation, occurring when some drugs are converted by CYP isoenzymes to reactive metabolites capable of irreversibly binding covalently to CYP3A4. Approaches using in vitro, in silico and in vivo models can be used to study CYP3A4 inactivation by drugs. Human liver microsomes are always used to estimate inactivation kinetic parameters including the concentration required for half-maximal inactivation (K(I)) and the maximal rate of inactivation at saturation (k(inact)).Clinically important mechanism-based CYP3A4 inhibitors include antibacterials (e.g. clarithromycin, erythromycin and isoniazid), anticancer agents (e.g. tamoxifen and irinotecan), anti-HIV agents (e.g. ritonavir and delavirdine), antihypertensives (e.g. dihydralazine, verapamil and diltiazem), sex steroids and their receptor modulators (e.g. gestodene and raloxifene), and several herbal constituents (e.g. bergamottin and glabridin). Drugs inactivating CYP3A4 often possess several common moieties such as a tertiary amine function, furan ring, and acetylene function. It appears that the chemical properties of a drug critical to CYP3A4 inactivation include formation of reactive metabolites by CYP isoenzymes, preponderance of CYP inducers and P-glycoprotein (P-gp) substrate, and occurrence of clinically significant pharmacokinetic interactions with coadministered drugs.Compared with reversible inhibition of CYP3A4, mechanism-based inhibition of CYP3A4 more frequently cause pharmacokinetic-pharmacodynamic drug-drug interactions, as the inactivated CYP3A4 has to be replaced by newly synthesised CYP3A4 protein. The resultant drug interactions may lead to adverse drug effects, including some fatal events. For example, when aforementioned CYP3A4 inhibitors are coadministered with terfenadine, cisapride or astemizole (all CYP3A4 substrates), torsades de pointes (a life-threatening ventricular arrhythmia associated with QT prolongation) may occur.However, predicting drug-drug interactions involving CYP3A4 inactivation is difficult, since the clinical outcomes depend on a number of factors that are associated with drugs and patients. The apparent pharmacokinetic effect of a mechanism-based inhibitor of CYP3A4 would be a function of its K(I), k(inact) and partition ratio and the zero-order synthesis rate of new or replacement enzyme. The inactivators for CYP3A4 can be inducers and P-gp substrates/inhibitors, confounding in vitro-in vivo extrapolation. The clinical significance of CYP3A inhibition for drug safety and efficacy warrants closer understanding of the mechanisms for each inhibitor. Furthermore, such inactivation may be exploited for therapeutic gain in certain circumstances.